Excited-state spectroscopy using single spin manipulation in diamond.
نویسندگان
چکیده
We use single-spin resonant spectroscopy to study the spin structure in the orbital excited state of a diamond nitrogen-vacancy (N-V) center at room temperature. The data show that the excited-state spin levels have a zero-field splitting that is approximately half of the value of the ground state levels, a g factor similar to the ground state value, and a hyperfine splitting approximately 20x larger than in the ground state. In addition, the width of the resonances reflects the electronic lifetime in the excited state. We also show that the spin level splitting can significantly differ between N-V centers, likely due to the effects of local strain, which provides a pathway to control over the spin Hamiltonian and may be useful for quantum-information processing.
منابع مشابه
Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance
Using pulsed optically detected magnetic resonance techniques, we directly probe electron-spin resonance transitions in the excited-state of single nitrogen-vacancy (NV) color centers in diamond. Unambiguous assignment of excited state fine structure is made, based on changes of NV defect photoluminescence lifetime. This study provides significant insight into the structure of the emitting 3E e...
متن کاملExcited-state spectroscopy of single NV defect in diamond using optically detected magnetic resonance
Using pulsed optically detected magnetic resonance techniques, we directly probe electron-spin resonance transitions in the excited-state of single Nitrogen-Vacancy color centers in diamond. Unambiguous assignment of excited state fine structure is made, based on changes of NV defect photoluminescence lifetime. This study provides significant insight into the structure of the emitting E excited...
متن کاملAll-optical control of a single electron spin in diamond
Precise coherent control of the individual electronic spins associated with atomlike impurities in the solid state is essential for applications in quantum information processing and quantum metrology. We demonstrate all-optical initialization, fast coherent manipulation, and readout of the electronic spin of the negatively charged nitrogenvacancy (NV−) center in diamond at T ∼ 7 K. We then pre...
متن کاملReadout and control of a single nuclear spin with a metastable electron spin ancilla.
Electron and nuclear spins associated with point defects in insulators are promising systems for solid-state quantum technology. The electron spin is usually used for readout and addressing, and nuclear spins are used as exquisite quantum bits and memory systems. With these systems, single-shot readout of single nuclear spins as well as entanglement, aided by the electron spin, have been shown....
متن کاملDark state photophysics of nitrogen–vacancy centres in diamond
Nitrogen–vacancy (NV) colour centres in diamond are attractive fluorescence emitters owing to their unprecedented photostability and superior applicability to spin manipulation and sub-diffraction far-field optical microscopy. However, some applications are limited by the co-occurrence of dark state population and optical excitation. In this paper, we use fluorescence microscopy and correlation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 101 11 شماره
صفحات -
تاریخ انتشار 2008